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Abstract

The paper presents accurate numerical solutions of the full 2D governing equations for steady and unsteady laminar/laminar internal
condensing flows of pure vapor (FC-72 and R-113) inside a vertical tube and a channel. The film condensation is on the inside wall of a
tube or one of the walls of a channel (the lower wall in case of a downward sloping channel). Computations find that exit condition
specifications are important and are able to characterize the flows’ sensitivity or insensitivity to the exit condition (which, in turn,
depends upon the flow downstream of the condenser). If well-defined natural steady/quasi-steady flows exist—as is shown to be the case
for gravity dominated or strong shear dominated condensate flows that remain parabolic up to the exit location—the computations are
able to predict both the natural exit condition and any point of transition (from stable to unstable or smooth to wavy behavior) that may
exist within this zone. Results on the role of surface tension and sensitivity to ever-present minuscule noise of the condensing surface are
also reported.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Sufficiently accurate numerical solutions of the full gov-
erning equations are presented for steady and unsteady
laminar/laminar film condensation flows. The in-tube
geometry (see Fig. 1a) is considered here while some new
and improved results for the horizontal and zero gravity
channel flow cases—formulated elsewhere [1,2]—are also
presented. The results are important for a qualitative
understanding of experiments (see, e.g., [3]) dealing with
the behavior of a condenser-section (typically of hydraulic
diameters in millimeter or sub-millimeter range). They also
relate to issues of better design and integration of condens-
ers needed in ground or space based thermal management
systems or power systems—both for large scale (such as
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Looped Heat Pipes, Capillary Pumped Loops, etc.) and
small scale (e.g. electronic-cooling systems) applications.

The classical steady solutions/studies for external film
condensation flow over vertical, horizontal, and tilted walls
([4–10], etc.) are available and they provide an important
test for the numerical solution procedure employed here.
A separate paper [11] establishes the ability of the simula-
tion tool to make steady (wave-free) and unsteady (wavy)
predictions that are consistent with the well-known results
for the classical Nusselt [4] problem.

The simulation tool used here is more completely
described in [1,2]. The interface tracking equation used here
and in [1,2] is the same one that is used for locating the
interface in the interface capturing approaches for flow with
phase-change (level-set method of Son and Dhir [12], etc.)
or without phase-change (level-set method of Sussman
et al. [13], VOF method of Hirt and Nichols [14], etc.).
The interface tracking approaches of Esmaeeli and

mailto:narain@mtu.edu


Nomenclature

CpI specific heat (J/(kg K))
hfg latent heat, hg � hf (J/kg)
Ja Jacob number, Cp1DT/hfg

kI thermal conductivity (W/(m K))
p pressure at any point (N/m2)
po pressure at the inlet (N/m2)
q00w bottom wall heat flux at any point and time

(W/m2)
R tube radius or channel gap (m)
ReI Reynolds numbers, qIUR/lI

Rein inlet Reynolds number, Re2

Red film Reynolds number, 4q1u1mDsteady/l1

TI temperatures (K)
U value of the average vapor speed at the inlet

(m/s)
u1m average liquid speed at any x (m/s)
(uI, vI) values of x and y components of velocity at a

point (x, y, t) or (x, r, t)—whichever choice is
relevant (m/s)

(uI, vI) non-dimensional values of u and v at a point
(x, y, t) or (x, r, t)—whichever choice is relevant

(x, y, t) physical distances (see Fig. 1a) and physical time
(m, m, s)

(x, y, t) non-dimensional values of (x, y, t)
Ze ratio of exit vapor mass flow rate to total inlet

mass flow rate
DT temperature difference between the vapor and

the wall (K)

Greek symbols

pI non-dimensional pressure
hI non-dimensional temperature
qI density (kg/m3)
lI viscosity (Pa s)
D physical value of condensate thickness (m)
d non-dimensional value of condensate film thick-

ness
mI kinematic viscosity, lI/qI (m2/s)
r surface tension (N/m)
e amplitude of non-dimensional disturbances rep-

resenting values of v1(x, 0, t)
a channel/cylinder tilt angle measured from hori-

zontal

Subscripts

I It takes a value of 1 for liquid phase and 2 for
vapor phase

s saturation condition
w wall
steady variable value for the associated steady solution

Superscript

i value of a variable at an interface location

L. Phan et al. / International Journal of Heat and Mass Transfer 49 (2006) 2058–2076 2059
Tryggvason [15], Juric and Tryggvason [16], Tezduyar [17],
Cruchaga et al. [18], etc. also use the same interfacial mass-
flux and energy conditions but in somewhat different order
and combination. The numerical scheme used here exploits
the rigorous analytical and numerical knowledge that exists
(see [19]) for solving a reduced hyperbolic form of the inter-

face tracking equation—this ensures convergence and accu-
racy of both the amplitude and the phase of the predicted
interfacial waves. Due to an algorithm improvement, the
convergence, grid independence, and satisfaction of all
interface/boundary conditions for the results reported here
are better than what were reported in [1,2].

The laminar/laminar simulation results reported here
for common refrigerants and small hydraulic diameter
ducts are valid for inlet Reynolds numbers up to 6000 or
higher (i.e., Rein 6 6000–8000)—this is because, in the
vicinity of the interface, the slow liquid condensate lamina-
rizes the vapor flow and one obtains results that are still in
a very good agreement with relevant experiments (see [2]
for comparisons with channel flow experiments). Further-
more, it has been verified that steady channel and cylindri-
cal simulations are consistent with each other—i.e. the two
sets of physical values of steady film thickness are nearly
equal when theory and physics demand that they be nearly
the same (i.e. the two cases satisfy a specific criteria given in
[20]).

The computations predict multiple constrained steady
solutions for a range of prescribed steady exit conditions
and they also predict, for many cases, a special natural exit
condition (selected from a range of choices available at the
exit) and the steady flow associated with it. If natural
steady/quasi-steady flows exist—as is shown to be the case
for gravity dominated or strong shear dominated conden-
sate flows—the computations are also able to predict the
approximate values of the critical Reynolds number Redjcr

which marks the transition from stable to unstable behav-
ior of the condensate. The results in this paper suggest a
typical range of Redjcr � 20–25 for laminar-smooth to lam-
inar-wavy transition in the gravity driven flows (which
have nearly parabolic condensate velocity profile) and a
different range of Redjcr � 7–12 associated with loss of

parabolicity instability identified for shear driven (zero
gravity or horizontal channel) condensate flows (which typ-
ically have linear condensate velocity profile).

The experimental results (presented elsewhere [3]) also
clearly support the computational results that show exis-
tence of multiple steady solutions for different prescriptions
of steady exit conditions and the existence of a special steady
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Fig. 1a. Flow geometry of the tube used for simulations.
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solution associated with the natural exit condition when no
exit condition is prescribed. This natural exit condition for
unconstrained exit case typically exists only if the flow is par-

abolic up to the exit location for the gravity dominated
cases. The simulations, however, also present additional
new results for longer length ducts and are able to identify
instabilities associated with other weakly parabolic to elliptic

zones. The computations also address some important
issues that deal with the role of gravity, surface-tension,
and sensitivity to ever-present minuscule wall noise.

Therefore currently available heat transfer correlations
([21,22], etc.) and flow regime maps (see [23,24], etc.) can
be improved, by a considered inclusion of the above
described issues, towards addressing their reported defi-
ciencies (see [25]).

2. Governing equations and boundary, interface and initial
conditions

2.1. Channel flow cases

The governing equations (interior equations, interface
conditions, etc.) for the channel flow cases are the same
as in [1,2].

2.2. In-tube cases

The liquid and vapor phases in the flow (e.g., see,
Fig. 1a) are denoted by a subscript I: I = 1 for liquid and
I = 2 for vapor. The fluid properties (density q, viscosity
l, specific heat Cp, and thermal conductivity k) with sub-
script I are assumed to take their representative constant
values for each phase (I = 1 or 2). Let TI be the tempera-
ture fields, pI be the pressure fields, Ts(p) be the saturation
temperature of the vapor as a function of local pressure p,
D be the film thickness, _m be the local interfacial mass flux,
Tw(x) (< Ts(p)) be a known temperature variation of the
cooled cylinder tube wall, and vI ¼ uIêx þ vIêr be the veloc-
ity fields. Furthermore, let R be the tube radius, gx and gy

be the components of gravity along x and y axes, p0 be the
inlet pressure, DT � Ts(p0) � Tw(0) be a representative con-
trolling temperature difference between the vapor and the
bottom plate, hfg be the heat of vaporization at tempera-
ture Ts(p), and U be the average inlet vapor speed deter-
mined by the inlet mass flow rate. With t representing the
physical time and (x, r) representing physical co-ordinates
of a point with respect to the axes in Fig. 1a (x = 0 is at
the inlet, r = 0 is at the center, and y = R � r = 0 is at
the condensing surface), we introduce a new list of funda-
mental non-dimensional variables through the following
definitions:

fx; y; r; d; uI; _mg � x
R
;

y
R
;

r
R
;
D
R
;
uI

U
;

_m
q1U

� �
;

fvI; hI; pI; tg �
vI

U
;

T I

DT
;
pI � p0

qIU
2
;

t
ðR=UÞ

� �
.

ð1Þ
2.2.1. Interior equations

The non-dimensional differential forms of mass,
momentum (axial and radial components), and energy
equations for flow in the interior of either of the phases
are well known and are given in Eq. (A.1) of the Appendix.

2.2.2. Interface conditions

The nearly exact interface conditions [26] for condensing
flows are given in Appendix Eqs. (A.1)–(A.9) of [1]. Utiliz-
ing a superscript ‘‘i’’ for values of flow variables at the
interface given by H � R � r � D(x,t) = 0, non-dimen-
sional forms of the interface conditions are given below.

• The non-dimensional form of the requirement of conti-
nuity of tangential component of velocities (Eq. (A.2) of
[1]) becomes

ui
2 ¼ ui

1 � dxðvi
2 � vi

1Þ; ð2Þ
where dx � od/ox.

• The non-dimensional form of the normal component of
momentum balance at the interface (Eq. (A.3) of [1])
becomes

pi
1 ¼

q2

q1

pi
2 �

1

We

dxx

½1þ d2
x�

3=2
þ 1

ð1� dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

x

q
0
B@

1
CA

þ _m2 q1

q2

� 1

� �
; ð3Þ

where We � q1U2R/r, and surface tension r = r(T)
where T is the interfacial temperature. When the
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interface is wavy, the equations governing the evolution
of superposed disturbances imply, in some cases, a stron-
ger dependence on the surface tension parameter We.

• The tangential component of momentum balance at the
interface (Eq. (A.4) of [1]) becomes

ou1

or

����
i

¼ l2

l1

ou2

or

����
i

þ ½t�; ð4Þ

where the term [t] used here has a definition given by Eq.
(A.2) in the Appendix of this paper.

• The non-dimensional forms _mLK and _mVK represent the
physical values of non-zero interfacial mass fluxes _mLK

and _mVK defined in Eq. (A.5) of [1]. These mass fluxes
arise from kinematic constraints imposed by normal
components of relative velocities of the liquid and the
vapor at the interface and are given by

_mLK� ui
1ðod=oxÞ�ðvi

1�od=otÞ
� 	

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðod=oxÞ2

q
;

_mVK�ðq2=q1Þ ui
2ðod=oxÞ�ðvi

2�od=otÞ
� 	

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðod=oxÞ2

q
.

ð5Þ
• The term _mEnergy is the non-dimensional form of the

non-zero interfacial mass flux _mEnergy that appears in
Eq. (A.6) of [1]. It represents the constraint imposed
on the interfacial mass flux by the balance equation
for energy transfer across the interface. This constraint
is given by:

_mEnergy � Ja=ðRe1Pr1Þfoh1=onji � ðk2=k1Þoh2=onjig;
ð6Þ

where Ja � Cp1DT=h0
fg; h

0
fg � hfgðT sðpoÞÞ ffi hfgðT sðpi

2ÞÞ,
and Pr1 � l1Cp1/k1.

• The interfacial mass balance requires that the net mass
flux (kg/m2/s) at a point on the interface, as given by
Eq. (A.7) of [1], be single-valued regardless of which
physical process is used to obtain it. The non-dimen-
sional form of this requirement becomes

_mLK ¼ _mVK ¼ _mEnergy � _m. ð7Þ
It should be noted that negligible interfacial thermal
resistance and equilibrium thermodynamics (this in-
cludes Eq. 8 below) on either side of the interface are
assumed to hold for all x—values at some distance
downstream of the origin (i.e., second or third compu-
tational cell onwards). Hence, as per discussions leading
to Eq. (A.8) in [1], no non-equilibrium thermodynamic
model for the interfacial mass-flux _m is needed as _m is
computed through any of the equalities in Eqs. (5)–(7)
once the solution has been obtained. However reason-
able initial estimates (from Nusselt [4] solution, etc.)
for _m may be used to start the iterations that lead to
converged solutions that are eventually independent of
the initial guess for _m.

• The non-dimensional equilibrium thermodynamic
restriction on the interfacial temperatures (as given by
Eq. (A.8) in [1]) becomes
hi
1 ffi hi

2 ¼ T sðpi
2Þ=DT � hsðpi

2Þ. ð8Þ
Within the vapor domain, for the considered refriger-
ants, changes in absolute pressure relative to the inlet
pressure are large enough to affect vapor motion. How-
ever, at the same time, they are too small to affect satu-
ration temperatures, which leads to hsðpi

2Þ ffi hsð0Þ.

2.2.3. Boundary conditions
The well-known boundary conditions at the tube wall

and the axisymmetric conditions at the centerline of the
tube are given below. They are:

• At the inlet x = 0, 0 6 r 6 1, and at any time t:

u2ð0; r; tÞ ¼ 1 v2ð0; r; tÞ ¼ 0;

p2ð0; r; tÞ ¼ 0 h2ð0; r; tÞ ¼ hsð0Þ.
ð9Þ

• At r = 1, the wall of the tube, at any point 0 6 x 6 xe,
and at any time t:

u1ðx; 1; tÞ ¼ 0; v1ðx; 1; tÞ ¼ 0; h1ðx; 1; tÞ ¼ hw; ð10Þ
where hw � Tw(x)/DT. For simulations reported here,
Tw(x) = constant (see Table 1).

• At r = 0, the center line of the tube, at any point
0 6 x 6 xe, and any time t, we have
ou

or

����
ðx;0;tÞ

¼ 0; v2ðx; 0; tÞ ¼ 0;

h2ðx; 0; tÞ ¼ hsð0Þ.
ð11Þ

Furthermore, at the center line, the temperature is at a
superheated value close to saturation temperature and this
allows the assumption of a nearly constant saturation tem-
perature for the vapor. This is reasonable because effects of
superheat DTsup in the typical 5–10 �C range lead to very
small vapor Jacob numbers JajV (� CpjV Æ DTsup/hfg(po),
where CpjV is the specific heat of the vapor) and hence these
effects are negligible.

2.3. Exit conditions

The condenser section, which is of the type shown in
Fig. 1a, is typically a part of a closed flow loop. For a given
vapor-to-wall temperature difference DT, inlet mass flow
rate _Min, and inlet pressure p0 (i.e. p2 = 0); the flow loop
for partial condensation cases may also be designed to pro-
vide: (a) an unconstrained or unprescribed exit condition
that allows the vapor to flow under its own choice of exit
quality (e.g. through the arrangement in Fig. 3 of [3], a
range of _Mv= _Min values is available at the exit), or (b) a con-
strained or prescribed exit condition, which may arise from
downstream constraints in the flow loop or by active down-
stream flow control (e.g. a specific value of _Mv= _Min at the
exit is prescribed through the arrangement in Fig. 2 of [3]).

In what follows, the flow condition at a point P (or a
zone) is called ‘‘elliptic,’’ if both the upstream and down-
stream neighbors (besides the side neighbors, as in



Flow direction 

Upstream point

Downstream point

“Elliptic” Behavior

Fig. 1b. ‘‘Elliptic’’ flow condition at point P.

Table 1
Specification of the reported condensing flows of saturated R-113 (ASHRAE [28]) vapor through the channel and saturated FC-72 (3M Corporation,
USA) vapor through the tube

Flow Geometry Fig. # po (kPa) Ts(po) (�C) DT (�C) h or R (m) U (m/s)

Rein Ja Fr�1
x Fr�1

y q2/q1 l2/l1 We Pr1

Cylinder 7a, 12a, 15, 17 77.546 49.5 5 0.0033 0.3
917.9 0.06148 0.3666 0.49 · 10�6 0.0065 0.02189 75.65 10.229

Cylinder 2, 6a—6f, 7b, 12b, 13 77.546 49.5 5 0.0033 0.41
1254.6 0.06148 0.1963 0.26 · 10�6 0.0065 0.02189 75.65 10.229

Cylinder 8b 77.546 49.5 5 0.0033 1
3060 0.06148 0.0329 0.44 · 10�7 0.0065 0.02189 75.65 10.229

Cylinder 8a, 12c, 16 77.546 49.5 5 0.0033 2
6120 0.06148 0.0329 0.44 · 10�7 0.0065 0.02189 75.65 10.229

Channel 9, 10a, 10b, 11, 14a 1254.6 49.5 5 0.004 0.41
1200 0.03413 0.2379 0.32 · 10�6 0.0052 0.0203 67.9 7.37

Channel 7c, 7d 1254.6 49.5 12.5 0.004 0.41
1461 0.08422 0.2379 0.32 · 10�6 0.0052 0.0203 67.9 7.37

Channel 14b 1254.6 49.5 5 0.004 1
2922 0.03413 0.04 0.5 · 10�7 0.0052 0.0203 67.9 7.37
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Fig. 1b) affect the value of flow variables at P. The flow
condition at a point P (or a zone) is called ‘‘parabolic,’’ if
mostly the upstream and the side neighbors (see Fig. 1c)
affect the value of flow variables at P (i.e., the influence
of the downstream point is, say, less than 1% of the influ-
ence of the remaining points).

The exit condition is specified by specifying the exit pres-
sure or exit vapor quality ratio Ze(t) at any given time—
which is defined as the ratio of vapor mass flow rate at
Flow direction 

Upstream point

“Parabolic” Behavior

Fig. 1c. ‘‘Parabolic’’ flow condition at point P.
the exit (x = xe) to vapor mass flow rate at the inlet. In gen-
eral condensing flows are ‘‘elliptic’’ and an exit condition
specification leading to compressible or incompressible
vapor flow is always possible. For nearly incompressible
vapor flows, an expression for Ze(t) is

ZeðtÞ ¼
Z 1�dðxe;tÞ

0

2 � r � u2ðxe; r; tÞ � dr. ð12Þ

For the limited range of prescribed (constrained) steady

exit conditions considered here, the vapor is nearly incom-

pressible and one has, in Eq. (12), Ze(t) = constant = Ze.
For steady constrained (or prescribed) exit condition cases
(as experimentally studied by the arrangement in Fig. 2 of
[3]), Ze must be specified with the understanding that if
pressure changes with respect to the inlet pressure are not
negligible, one must allow for non-uniform but steady val-
ues of vapor density.

For unsteady flows under unconstrained or unspecified
exit conditions, a long term natural solution associated
with natural exit condition may be possible (i.e., for any
steady solution obtained at t 6 0 with a prescribed steady
exit condition, the unsteady solution yields a natural steady
solution as t!1). This paper primarily focuses on the
unconstrained (or unprescribed) exit condition cases as
they are the most commonly occurring situations for con-
densers in many applications. For practical condensation
cases, this means that the value of Ze(t) in Eq. (12) must
not be specified and the ‘‘parabolic’’ and ‘‘elliptic’’ zones
of the flow need to be ascertained/deduced by looking at
the associated unsteady solution’s behavior as t!1. A
natural long term steady value of Ze (or, equivalently,
steady exit pressure)—for a vertical in-tube flow under
unconstrained exit conditions (when the exit happens to
be in the ‘‘parabolic’’ zone)—is predicted/obtained as in
Fig. 2. This is the same approach that has earlier been
employed/developed for the vertical channel cases (see
[1,2]).



Ze = 0.15 @ t = 0

Ze|Na = 0.215 @ t = 0 

Ze = 0.3 or 0.15 @ t = 25 

Ze = 0.3 @ t = 0 

x

δ

Fig. 2. For tube flow situations specified as in Table 1, the figure depicts
two sets of d(x, t) predictions for t > 0, one curve starts at Ze = 0.3 at
t = 0, and tends, as t!1, to the solution for ZejNa = 0.215. The other
curve starts at Ze = 0.15 at t = 0 and tends, as t!1, to the same ZejNa

solution. The spatial/temporal grid-spacings used are, approximately,
(ni · nj) · Dt = (30 · 50) · 5.
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2.3.1. Initial conditions

The above described continuum equations do not model
and incorporate various inter-molecular forces that are
important in determining the time evolution of very thin
(10–100 nm) condensate film thickness d (x, t). As a result,
t = 0 can not be chosen to be the time when saturated
vapor first comes in contact with and condenses on the
dry sub-cooled (Tw(x) < Ts(p0)) wall of a tube. With the
above modelling limitations, if a steady solution exists,
one choice that is often used in this paper is to start at a
time (t = 0) for which one has a sufficiently thick steady

solution of the continuum equations (where all the govern-
ing equations clearly apply) for a prescribed (or con-
strained) exit condition case—and then, from there, one
can obtain the natural large time (t!1) steady/quasi-
steady solutions with the help of the unsteady equations.
That is, if /(x, r, t) is any variable (such as uI, vI, pI, hI,
etc.), the initial values of / and film thickness d(x, t) are
given as

/ðx; r; 0Þ ¼ /steadyðx; rÞ and dðx; 0Þ ¼ dsteadyðxÞ; ð13Þ

where /steady and dsteady are solutions of the governing
equations obtained by dropping all time dependencies in
Eqs. (2)–(11) and solving the resulting steady equations
(which are elliptic near exit) for any arbitrarily prescribed
steady value of Ze(t) = constant = Ze, where:

Zeð0Þ ¼
Z 1�dsteadyðxeÞ

0

2 � r � u2ðxe; rÞ � dr � Ze. ð14Þ

Although the prescription of the initial Ze within
0 < Ze < 1 is arbitrary, it should be such that it allows a
steady computational solution in the stratified/annular
regime assumed in Fig. 1a. The long time ((t!1) natural

steady value of the exit condition (denoted as ZejNa) asso-
ciated with a well-defined steady/quasi-steady solution
(which exist only if the exit location is within the parabolic
zone) under an unconstrained exit condition is independent
of the choice of Ze = Ze(0) and is computationally found—
as noted in the caption for Fig. 2—by the procedure
described in [1,2]. More generally, however, as will be seen
later, if a long time (t!1) steady/quasi-steady solution
exists for unconstrained (or unprescribed) exit conditions,
this solution may have just a ‘‘long term parabolic’’ steady
part or, also, further downstream of it, a poorly defined
‘‘long term elliptic’’ quasi-steady part (with the poor defini-
tion arising from the fact that the flow domain and/or
arrangement do not specify any exit condition). If the flow
is parabolic up to the exit, the t!1 ‘‘natural’’ solution is
found to be independent of the choice of initial conditions
(with Eq. (13) only being a convenient choice).

An inspection of all the non-dimensional governing
equations, interface conditions, and boundary conditions
reveal the fact that the flows considered here are affected
by the following set of 10 independent non-dimensional
parameters:

Rein; Ja;Fr�1
x ;

q2

q1

;
l2

l1

;Pr1; xe;Zeð0Þ;We

� �
; ð15Þ

where Rein � q2UR/l2 � Re2. Here Rein, Frx
�1, and Ja are

control parameters respectively associated with inlet speed
U, gravity component along x, and temperature difference
DT. For unconstrained exit conditions considered here for
which the flow is parabolic up to the exit, Fig. 2 shows that
Ze(0) is an exit condition parameter, which will not affect
the long time steady or quasi-steady values of Ze(t), viz.
ZejNa. For constrained exit conditions, e.g. time-averaged
Ze(t) = Ze(0) or Ze(t) = Ze(0) for all t P 0, Ze(0) is an
important flow parameter and its role in defining the pos-
sible vapor compressibility effects is not fully understood
at present (e.g., if prescribed steady Ze values are con-
strained to stay in a range far from ZejNa value, vapor com-
pressibility effects may be important). The density ratio
q2/q1, viscosity ratio l2/l1, and Prandtl number Pr1 are
passive fluid parameters. Also, for unsteady wavy-interface
situations, particularly in 0g or shear dominated flows, the
above equations imply additional dependence on a surface
tension parameter, Weber number We � q2U2R/r. For
superheated vapors, there is a very weak dependence,
through Eq. (6), on the thermal conductivity ratio k2/k1.

3. Computational methodology

In its broad outline, the computational algorithm and
methodology for the in-tube case parallel the algorithm
and methodology described in [1,2] for the channel case.
However, when compared to the Cartesian channel geom-
etry, there are significant differences in the details of the
code for the cylindrical in-tube geometry and these are
reported in [27].

4. Flow regime characterizations

There are two types of characterizations of steady/quasi-
steady partial condensation flow regimes in a condenser.
One type is associated with the prescribed exit conditions



Steady
“Elliptic”

1g

Fixed Exit Condition

Constrained -1

Constrained -2

Fig. 3. The computational and experimental results (see [3]) suggest
predominantly annular flow regimes for constrained (i.e. prescribed)
steady exit conditions.

2064 L. Phan et al. / International Journal of Heat and Mass Transfer 49 (2006) 2058–2076
(i.e. prescribed exit pressure or exit quality Ze(t)) for which
the flow inside the condenser is always ‘‘elliptic’’ (see
Fig. 3). Therefore changes in the prescription at the exit
for a given set of inlet conditions (inlet mass flow rate
_Min, etc.) and wall conditions (DT, etc.) cause the vapor

liquid configuration and the flow inside the condenser to
change (with the vapor flow remaining incompressible or
becoming compressible). Unlike single phase flows, this
‘‘ellipticity’’ is inherent to internal condensing flows (with
prescribed wall temperatures) and it arises from a degree
of freedom available through different liquid–vapor config-
urations (and associated heat transfer rates) that are possi-
ble for different vapor flow fields associated with different
Fig. 4a. Commonly occurring unconstrained (or unspecified) exit-condition c
from the inlet to the location of the exit section.
exit conditions. The realization of different steady/
quasi-steady flows for different exit steady condition pre-
scription—as indicated by Fig. 3—is demonstrated—theo-
retically in this paper and experimentally in another paper
[3]. A method for specifying exit condition for partial con-
densation flows (see the arrangement in Fig. 2 of [3]) gives
very stable flows.

The second type of characterization is associated with
steady/quasi-steady flows that are some times realized over
a long time (often included in start-up time) when no exit
conditions are prescribed. This is possible when condenser
is placed in a system that allows a suitable range of avail-
able choices for exit conditions. For partial condensation,
one practical way of achieving steady/quasi-steady flows
under unconstrained exit condition is shown in Fig. 3 of
[3]. For full condensation cases, a practical way of achiev-
ing unconstrained exit condition is described in [3]. In a
partial condensation case, as indicated in Figs. 4a and 4b,
depending upon the location of the exit, long term
steady/quasi-steady regime may consist of either a ‘‘para-
bolic’’ zone alone or a combination of ‘‘parabolic’’ and
‘‘elliptic’’ zones. By parabolic zone LP one means that the
flow in this zone—with its mass flow rate and temperature
difference DT—has sufficient ‘‘will’’ to seek its own exit
condition unless the conditions at the exit make it impossi-
ble to seek this value. Experimental examples of a para-
bolic flow’s ‘‘will’’ to seek its own exit condition and its
compatibility or incompatibility with the attainment of
steady flow in the components downstream of the con-
denser are given in [3]. In case of incompatibility, experi-
mental results presented in [3] show occurrence of flow
oscillations as a form of system instability. If the exit lies
at the end of an elliptic zone; then the flow in the condenser
ases under normal gravity conditions. Condenser length L is the distance



Fig. 4b. Commonly occurring unconstrained (or unspecified) exit-condition cases under shear dominated or zero-gravity conditions. Condenser length L
is the distance from the inlet to the location of the exit section.
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(and particularly in the elliptic zone) gets determined by the
exit condition—whose time dependent (see [3]) or time
independent (see [3]) values are strong functions of the sys-
tem in which the condenser is embedded and pressure con-
straints or steadiness/stability issues for the flow conditions
downstream of the condenser.

However specifying this type of exit condition for a full
(or complete) condensation case necessarily involves speci-
fication of both the point of full condensation and the
value of pressure there. The point of full condensation typ-
ically lies in the ‘‘elliptic’’ zone and the exit locations for
such cases are characterized by ‘‘Exit-B’’ in Fig. 4a for
gravity driven flows and by ‘‘Exit-C’’ in Fig. 4b for shear
driven flows. Though it is important, practical ways of
specifying different type of exit condition for full condensa-
tion case are not straightforward and are being discussed
elsewhere.

For full condensation unconstrained cases, if a steady
quasi-steady flow exists, the flow zone is typically made
up of both ‘‘parabolic’’ and ‘‘elliptic’’ zones (with the one
or the other being dominant depending on the value of
LP/L in Figs. 4a and 4b). A method for seeking and achiev-
ing an unconstrained steady full condensation case is
described in [3].

Typically for shear driven or 0g flows for a given DT and
no prescribed exit condition, LP in Fig. 4b decreases with
decrease in _Min. However, for gravity driven flows for a
given DT and no prescribed exit condition, LP in Fig. 4a
may first decrease with _Min (assuming a large initial value
of _Min for which the vapor shear on the condensate is in
the direction of gravity) and then increase again with fur-
ther decrease in _Min. An increase in LP with sufficient
reduction in _Min is due to gravity driven condensate’s abil-
ity to drive the vapor—this is due to the condensate mov-
ing significantly faster than the vapor and, as a result, the
shear direction on the condensate is, almost everywhere,
opposite to the direction of gravity (as in the Nusselt prob-
lem [11]).

Computational results are dealt in Sections 5–12.

5. Accuracy and consistency of the numerical method used

The convergence, grid independence, and satisfaction of
all the interface/boundary conditions are better (less than
5% in the representative Table 2 for the unsteady wave cal-
culations) than the results reported in [1,2] (which were, on
average, less than 6–8% for the most demanding resonant
wave calculations). The better accuracy in this paper is
because of an improved methodology with regard to the
satisfaction of various interfacial mass flux equalities—that
are, in this paper, at par with equalities dealing with other
interface-conditions. The satisfaction of Eq. (7) is within
3% for all cases except for larger amplitude resonant waves
where this equality is typically satisfied within 5% (see
Table 2 for a representative case). The spatial and temporal
grid spacings and total lengths impose a restriction on
wavelength k and frequency f that can be adequately
resolved. If the maximum spacing of the grid in x direction
is Dxm and its total length is xe while the total time duration
is te and it is divided in equal intervals of duration Dt; the
restrictions imposed by Nyquist criteria [19] are well satis-
fied for k P 4 Æ Dxm and f 6 (4 Æ Dt)�1 and the restrictions
imposed by the domain lengths are well satisfied for
k 6 xe/2 and f P 2/te. The initial (t = 0) spatial and



Table 2
Representative interfacial values of relevant non-dimensional variables for the k = 13 case (at t = 100) in Fig. 7b

X _mLK _mVK _mEnergy pi
1 þ ½t� pi

2 ui
1 ui

2 si
1 si

2 hi
1 hi

2

4 1.23E�04 1.23E�04 1.23E�04 �1.76E�02 �1.76E�02 6.60E�02 6.60E�02 4.74E�01 4.74E�01 64.52 64.52
5 1.11E�04 1.11E�04 1.11E�04 �1.73E�02 �1.73E�02 7.59E�02 7.59E�02 3.87E�01 3.87E�01 64.52 64.52
6 1.03E�04 1.03E�04 1.03E�04 �1.71E�02 �1.71E�02 8.45E�02 8.45E�02 3.28E�01 3.28E�01 64.52 64.52
7 9.67E�05 9.68E�05 9.67E�05 �1.68E�02 �1.68E�02 9.26E�02 9.25E�02 2.81E�01 2.81E�01 64.52 64.52
8 9.20E�05 9.20E�05 9.20E�05 �1.66E�02 �1.66E�02 1.00E�01 1.00E�01 2.42E�01 2.42E�01 64.52 64.52
9 8.82E�05 8.82E�05 8.82E�05 �1.64E�02 �1.64E�02 1.08E�01 1.08E�01 2.07E�01 2.07E�01 64.52 64.52
10 8.49E�05 8.49E�05 8.49E�05 �1.62E�02 �1.62E�02 1.15E�01 1.15E�01 1.76E�01 1.76E�01 64.52 64.52
11 8.21E�05 8.22E�05 8.21E�05 �1.60E�02 �1.60E�02 1.23E�01 1.23E�01 1.48E�01 1.48E�01 64.52 64.52
12 7.97E�05 7.97E�05 7.97E�05 �1.58E�02 �1.58E�02 1.31E�01 1.30E�01 1.24E�01 1.24E�01 64.52 64.52
13 7.76E�05 7.76E�05 7.76E�05 �1.56E�02 �1.56E�02 1.38E�01 1.38E�01 1.01E�01 1.01E�01 64.52 64.52
14 7.57E�05 7.57E�05 7.57E�05 �1.54E�02 �1.54E�02 1.46E�01 1.45E�01 7.96E�02 7.96E�02 64.52 64.52
15 7.39E�05 7.39E�05 7.39E�05 �1.53E�02 �1.53E�02 1.54E�01 1.53E�01 5.97E�02 5.97E�02 64.52 64.52
16 7.23E�05 7.24E�05 7.23E�05 �1.51E�02 �1.51E�02 1.61E�01 1.61E�01 4.12E�02 4.12E�02 64.52 64.52

The values show satisfaction of all the interface conditions. Note: t ¼ � 1
We
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temporal grids are defined by (ni · nj · nt), where ni is the
total number of initial grid points along x (0 to xe), nj is
the total number of initial grid points along r (0 to 1) or
y (0 to 1), and nt is number of time steps with equal inter-
vals (Dt). Typical values of ni (and nj) used for the cylindri-
cal geometry were of the order 20–40 (and 40–60) and for
the channel geometry were 30–50 (and 50–70).

A separate paper [11] also establishes the ability of the
simulation tool to make predictions that are consistent
with the well-known steady/unsteady results for external

film condensation flows for the classical Nusselt [4]
problem.

Furthermore, it has been verified (see Fig. 5) that the
channel and cylindrical simulations are consistent—i.e.
physical values of steady film thickness are nearly the same
when theory and physics demand (see [20]) that they be
nearly the same. This criterion, discussed in the Appendix
of [20], states that if the channel height h and tube diameter
D = 2R satisfy

h ¼ D=4 ¼ R=2; ð16Þ
and, in addition, when both the channel and the corre-
sponding tube geometries employ the same fluid and have
Fig. 5. The above figure compares physical values of film thickness obtained fo
and steady down-flow situations are specified by h = D/4 = 0.00165 m, U = 0
fluid. The exit conditions (at xe = 30) are the same, i.e, Ze,channel = Ze,in-tube =
the same values of: duct lengths xe, inlet pressure, inlet tem-
perature, average inlet speed U, temperature difference DT

between the vapor and the condensing surface, and exit
vapor quality Ze; then the approximate equality of the
average heat transfer coefficients �hx is expected for each
x = xe. Because of the equality of the average heat transfer
coefficients, the approximate equality:

DðxÞjchannel ffi DðxÞjtube; ð17Þ
follows, as is the case for Fig. 5, for all x-locations where
liquid temperature profiles are linear across the condensate
thickness.

6. Multiple constrained steady solutions

6.1. In-tube/channel cases

As depicted in Fig. 2 for the vertical-tube case and also
discussed for various channel cases (see [1,2]), the computa-
tions find multiple steady solutions associated with a range
of exit conditions. In other words, as generally character-
ized in Fig. 3, the problem is elliptic and different steady
solutions correspond to different steady specifications of
r an in-tube case with a corresponding channel flow case. The two vertical
.41 m/s, po = 77.546 kPa, Ts(po) = 49.5 �C, DT (po) = 5 �C and R-113 as
0.3.



Fig. 6c. The above figure is for the normal gravity case considered in
Fig. 6a and shows ‘‘p1 versus y’’ and ‘‘q2

q1
p2 versus y’’ profile at x = 10.
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the exit condition (say by the arrangement shown in Fig. 2
of [3]). For all the three constrained steady cases in Fig. 2,
the solutions are reasonable as the uniform vapor density
approximation still holds. The computations for Fig. 2 also
demonstrate, under unconstrained exit condition (e.g., as
achieved by the arrangement in Fig. 3 of [3]), there exists
a ‘‘natural’’ exit condition for many of the vertical in-tube
cases. These cases relate to Fig. 4a with the exit being at a
location which lies within the long term ‘‘parabolic’’ zone
(characterized as ‘‘Exit-A’’ in Fig. 4a). Representative
details of these types of steady 1g and 0g natural exit con-
dition solutions are described in Figs. 6a–6f. Fig. 6a shows
the trends of the film thickness and the liquid and vapor
velocity profiles uI as a function of y at x = 10. Fig. 6b
shows the trends of the film thickness and the liquid and
vapor temperature profiles hI as a function of y at x = 10.
Fig. 6a. For steady in-tube flows under conditions specified as in Table 1
(1g vertical and 0g), the figure shows the uI-velocity (x-component) profile
(I = 1 and 2) at x = 10 and compares their film thickness values.

Fig. 6b. The above figure is for the cases considered in Fig. 6a and shows
‘‘hI (I = 1 & 2) versus y’’ profile at x = 10.

Fig. 6d. The above figure is for the normal gravity case considered in
Fig. 6a and it shows ‘‘p1 versus x’’ and ‘‘q2

q1
p2 versus x’’ profile at y = 10.

Fig. 6e. The above figure is for the normal gravity case considered in
Fig. 6a and shows ‘‘jvIj versus y’’ for I = 1 and 2 at x = 10.
As described in the captions for Figs. 6c, 6d, these figures
respectively show representative y- and x-profiles of the
relevant non-dimensional pressures. Fig. 6e shows the vari-
ations in the magnitude of the transverse velocity compo-
nents vI for the liquid and for the vapor. Fig. 6f shows
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Fig. 7a. For flow situations specified in Table 1 of the tube, the above film
thickness predictions (Dt = 1) are for a vertical tube under normal gravity
conditions. An initial disturbance on the steady film thickness solution
was superposed at t = 0 and tracked to t = 42. The initial d is given
as d(x, 0) = dsteady(x) + d 0(x, 0), where a non-zero disturbance d 0(x, 0)
was given at t = 0 on the steady solution dsteady. Here d 0(x, 0) =
0.0015 Æ sin(2px/k) for 3.5 P x P 0.3 and k = 2.6.
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Fig. 7b. For flow situations specified in Table 1 of the tube, the above film
thickness predictions (Dt = 5) are for a vertical tube under normal gravity
conditions. An initial d on the steady film thickness solution was
superposed at t = 0 and tracked to t = 170. The initial disturbance is
given as d(x, 0) = dsteady (x) + d 0(x, 0), where a non-zero disturbance
d 0(x, 0) was given at t = 0 on the steady solution dsteady. Here
d 0(x, 0) = 0.001 Æ sin(2p x/k) for 9.5 P x P 0.9 and k = 6 and 13.

Fig. 6f. The above streamline pattern is for the normal gravity case
considered in Fig. 6a.
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the representative streamline pattern for a normal gravity
case considered in Fig. 6a.

Experiments reported in [3] also clearly confirm the
above described results regarding the multiplicity of con-
strained steady solutions and the existence of a natural exit
condition for those gravity dominated partial condensation
cases for which the exit lies within the long term ‘‘para-
bolic’’ zone (such as Exit-A in Fig. 4a). Since the currently
available simulation tool does not allow unsteady and non-
uniform values of vapor density that are needed for studies
that can address realizabilty, stability, and noise-sensitivity
issues for the constrained steady solutions; such computa-
tional studies are not undertaken here. It should be noted,
though, that the experimental results reported in [3] suggest
that many of the constrained steady solutions are far more
stable/robust than their natural exit condition counterparts.

In what follows, the focus of this paper is primarily on
the steady/quasi-steady flows the can possibly be achieved
under the more commonly occurring unconstrained
(unprescribed) exit condition situations. For these cases,
assumption of nearly incompressible vapor flows is typi-
cally good. The paper further focuses on an investigation
of realizabilty, stability, and noise-sensitivity of such flows.

7. Stability issues

These studies look at the long term response of solutions
when: (i) different wave-length sinusoidal disturbances are
superposed at various locations of the initial film thickness
profile, and (ii) no initial disturbances (except those that
may arise from the numerical approach) are superposed
on the initial data. The ‘‘no initial disturbance’’ study helps
in determining the zones of ‘‘parabolicity’’ and ‘‘ellipticity’’
within the condenser. For example, at t = 0, if one goes
from prescribed exit condition Ze(t) = Ze(0) for t 6 0 to
unspecified Ze(t) values at t > 0, the ‘‘no initial distur-
bance’’ study is best suited for identifying multiple drifting
solutions (with multiplicity arising from different initial
choices of Ze(0) for different exit conditions) in the elliptic
zone LE of Figs. 4a and 4b and, also, for identifying nearly
identical long term solutions for the parabolic zone LP of
Figs. 4a and 4b.

7.1. Gravity driven cases

7.1.1. In-tube geometry
The stability response of smooth-interface steady solu-

tions associated with natural exit-condition (such as the
normal gravity solution in Fig. 2) is investigated in Figs.
7a and 7b for the in-tube flows. It is found that, for the rep-
resentative case considered in Fig. 7a, the normal gravity
solutions are stable (i.e., amplitudes do not grow) over
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Fig. 7d. For flow situations specified in Table 1 of the tube, the above film
thickness predictions (Dt = 15) are for a vertical channel under normal
gravity conditions exposed to no noise condition.
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the length of the tube for which x 6 10 and Red 6 22. How-
ever, for the longer length tubes in Fig. 7b, there is a loss of
stability, i.e., amplitudes are eventually sufficiently large—
which is defined here to mean that they are more than 2.5
times the amplitudes of the initial sinusoidal disturbance
and, at the same time, greater than 15% of the initial undis-
turbed film thickness at their long time locations. By defi-
nition, initial sinusoidal disturbance are required to have
locations near the inlet and amplitudes that are less than
10% of the undisturbed film thickness near the inlet. Under
the above definition, the longer length flows lose stability
for Red P Redjcr � 23. This loss of stability for the gravity
driven forced internal flow still keeps the exit within the
long term parabolic zone (as characterized by ‘‘Exit-A’’
in Fig. 4a). The instability is qualitatively similar (though
somewhat different quantitatively) to the one found for
the gravity driven Nusselt problem [4] for which we have
shown (see [11]) that Redjcr � 30—a well-known estimate
which is also supported by experiments. These steady solu-
tions—including the stable zones—are quite noise-sensitive

(as seen below through Figs. 12a and 12b), thereby making
their actual realization only a quasi-steady phenomenon.
The instability at Redjcr � 23 appears to be associated with
the fact that gravity speeds up the thin-film condensate
flows and, therefore, is perhaps associated with Tollmien-
Schlichting type instability (increasing film Reynolds num-
ber Red) in the presence of free-surface wave phenomena
and mass transfer across the interface.

7.1.2. Channel geometry
The cases for flow through a short length channel

(Red 6 2) follow the stability trends described in [1,2].
The longer length cases follow the in-tube case trends
described in Figs. 7a and 7b. For example, in Fig. 7c, the
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Fig. 7c. For flow situations specified in Table 1 of the channel, the above
film thickness predictions (Dt = 3) are for a vertical channel under normal
gravity conditions. An initial disturbance on the steady film thickness
solution was superposed at t = 0 and tracked to t = 165. The initial d is
given as d(x, 0) = dsteady(x) + d 0(x, 0), where a non-zero disturbance
d 0(x, 0) was given at t = 0 on the steady solution dsteady. Here
d 0(x, 0) = 0.001 Æ sin(2px/k) for all x and k = 13. The interface was tracked
with Dt = 3.
channel analogue of the case in Fig. 7b is shown. This
instability (at locations where Red P 30), because of high
growth rates of computational noise and proximity to the
‘‘elliptic’’ zone (see the characterization in Fig. 4a), also
manifests itself in Fig. 7d that deals with the case for no ini-
tial disturbances.

7.2. Shear driven cases

7.2.1. In-tube geometry

Fig. 8a results for a 0g in-tube flow show stability
because the shear driven flow has a sufficiently strong inter-
facial shear (i.e. neither weak nor so strong that it can
destabilize the flow) through out the ‘‘long term parabolic’’
zone associated with the chosen inlet vapor speed, temper-
ature difference DT, and the length of the duct (with uncon-
strained exit conditions). As the inlet vapor speed is
reduced, as is the case in Fig. 8b, there are instabilities asso-
ciated with the long term ‘‘weakly-parabolic/elliptic-zone’’
that the vapor must enter after its passage through the
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Fig. 8a. For flow situations specified in Table 1 of the channel, the above
film thickness predictions (Dt = 3) are for a channel under zero-gravity
conditions and exposed to no externally imposed noise.
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Fig. 10a. For horizontal channel (normal gravity) flow situation specified
as in Table 1, the figure above shows the effects of inadequate shear and
associated convective instabilities of the steady solutions (t = 0) under no
noise conditions. The interface was tracked, in the absence of any initial
disturbance, with Dt = 10.
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Fig. 8b. For in-tube (zero gravity) flow situation specified as in Table 1,
the figure above shows the effects of inadequate shear and associated
convective instabilities of the steady solutions (t = 0). The interface was
tracked with Dt = 15.
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parabolic zone (exit location is characterized by ‘‘Exit-B’’
in Fig. 4b). These shear driven flow instabilities are
described below, in greater details, for the channel
geometry case.

7.3. Channel geometry

As do the results for the in-tube cases of Fig. 8a, Fig. 9
results for a horizontal channel flow (also see [1,2]) show
that the basic natural steady flow is stable to initial distur-
bances. However, the existence of this stable and natural

steady solution (unconstrained exit) for this particular
shear driven flow is a result of the fact that the ‘‘long term
parabolic’’ vapor flow zone covers the short length of the
duct (the exit location is characterized by ‘‘Exit-A’’ in
Fig. 4b). This is also because the inlet vapor speed is suffi-
ciently large and the temperature difference DT is suffi-
ciently small. For longer channel-length cases (dealing
with horizontal channel or zero gravity configurations)
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Fig. 9. For horizontal channel (normal gravity) flow situation specified in
Table 1, the above figure shows the stable response (at t = 240) of
transient film thickness to an initial disturbance (d(x, 0) = dsteady(x) +
d 0(x, 0)) shown at t = 0. The interface was tracked with Dt = 10.
considered in Figs. 10a and 10b—at locations where vapor
shear is inadequate to drive the condensate—there is, how-
ever, a sufficiently strong instability that is noticeable even
in the absence of initial disturbances or wall noise. The fact
that this static type convective instability arises in the seek-
ing of a ‘‘natural’’ exit condition from a prescribed initial
condition indicates that a natural exit condition—in the
sense of an attractor solution defined in Liang et al. [2] with
the help of Fig. 4 in [2]—does not exist when the vapor flow
slows down enough to make its long time governing equa-
tions behave ‘‘weakly parabolic’’ to ‘‘elliptic’’ as opposed
to ‘‘parabolic.’’ This means that this exit location of con-
denser is characterized by ‘‘Exit-B’’ in Fig. 4b. In fact it
can be said that, over the parabolic zones, shear driven
cases in 0g have attractors (steady flow solutions) that are
often quite weak in the sense that the long term steady
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Fig. 10b. For channel (zero gravity) flow situation specified as in Table 1,
the above figure removes gravity (i.e. 0g) from the U = 0.41 m/s case
considered in Fig. 7a. The figure shows the effects of initial disturbance in
the stable parabolic and unstable elliptic portions of the flow. The
interface was tracked with Dt = 10.
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Fig. 11. For channel flow situations specified as in Table 1, the figure
above shows the film thickness values for steady no-noise and unsteady
resonant bottom wall noise cases—under both zero-gravity and normal
gravity environments. Resonant bottom wall noise is given as v1

(x, 0,t) = e Æ sin(2px/k) Æ sin(2pt/T), e = 0.75E�05, k = 10, and TðxÞ ¼
k=�usteady. The interface was tracked with Dt = 2.5 for 1g vertical and
Dt = 10 for 0g and 1g horizontal cases.
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flows are only neutrally stable under unconstrained exit
conditions—that is, they show small drifting for small ini-
tial disturbances (implying that the bottom point of the
suggested bowl in Fig. 4 of [2] is no longer a point but
rather a set of points that resemble a flat surface—this is
because the exit location has shifted from being in a ‘‘par-
abolic zone’’ to being in a ‘‘weakly parabolic’’ zone). This
behavior summarized as ‘‘Exit-B’’ behavior in Fig. 4b, cor-
responds to attaining a naturally selected steady solution
over the parabolic zone and attaining a rather indetermi-
nate solution (prone to disturbances and can only be
repeatedly realized to within 10-15% of a certain solution)
over the ‘‘weakly parabolic’’ zone. The above described
‘‘loss of parabolicity’’ phenomenon associated with the
convective instabilities in Figs. 10a and 10b are also accom-
panied by the typical instabilities associated with the ampli-
fication of initial disturbances in this wavy zone. Therefore,
the condensate, in general, will not achieve a wave-free
steady solution over this downstream part of the duct
length. As is shown in Fig. 10b, the downstream ‘‘elliptic’’
zones are quite sensitive to initial disturbances while the
upstream wave-free zones are not. The disturbances in
the upstream small amplitude wave zone are simply prop-
agated forward into the downstream large amplitude wave
zone. Furthermore, as shown in Fig. 10a, as the inlet speed
U is reduced, the wave-free leading edge ‘‘parabolic’’ zone
in the front shrinks further and, eventually, one may not
have any wave free zone (associated with a natural steady
solution) for the flow. That is, for shear driven zero-gravity
or horizontal channel flows, quasi-steady (i.e. steady-in-
the-mean) flows can not always be realized because the
inadequacy of the available shear may not allow existence
of a natural exit condition and this makes, in the long term,
part or all of the flow ‘‘elliptic’’ and unstable or unidentifi-

able under unconstrained exit conditions.
In summary, the stability for shear driven condensate is

significantly weaker than normal gravity on four counts: (i)
the waves damp out slower, (ii) Redjcr � 7–12 as opposed to
the gravity driven flows’ Redjcr � 20–25, (iii) there may not
be a crisp or sharp ‘‘natural’’ exit condition because of the
extreme shortness of the long-term ‘‘parabolic’’ zone—
thereby making the attractor associated with the natural
exit condition only ‘‘weakly parabolic’’ (see the zone char-
acterizations in Fig. 4b), and (iv) a much greater sensitivity
of the flows to small changes in the exit condition (pressure
or vapor quality) is found because there is a freedom to
choose different exit conditions (this is because small
changes in exit pressure strongly affect the vapor motion
and, in turn, the shear driven liquid motion).

In the light of the above, shear driven steady/quasi-
steady partial condensation flow cases (when they exist)
in zero-gravity are best realized—with significant suppres-
sion of the above described instabilities—by prescribing
the exit condition, for example, by arranging the flow
downstream of the condenser to operate in a way that fixes
the exit condition (e.g., the arrangement in Fig. 2 of [3]
gives very stable flows). This constrained situation is more
stable than the unconstrained exit condition situation that
is more commonly used (e.g., by the arrangement shown in
Fig. 3 of [3]).

8. Effects of gravity on natural steady solutions

8.1. Channel geometry

For short length channels (Red 6 10), the results and
discussions for 1g versus 0g cases are similar as discussed
in [1,2]. The steady results are also compared in Fig. 11.
For longer length shear driven channel flows in Figs. 10a
and 10b, in comparison to a corresponding gravity driven
case, the non-existence of a ‘‘natural’’ solution and/or sta-
bility issues for the associated steady/quasi-steady solu-
tions become more critical because of a much smaller
length LP of the long term ‘‘parabolic’’ zone (as compared
to gravity dominated cases).

8.2. In-tube geometry

The in-tube results comparing gravity driven (1g) and
shear driven (0g) situations—for short length ducts—fol-
low the results given earlier in Figs. 6a–6f.

The in-tube results for 1g and 0g—for longer length
ducts—follow the remarks made earlier for Figs. 7b and
8b.

9. Noise-sensitivity of natural steady solutions

9.1. Gravity driven cases

9.1.1. In-tube/channel geometries

Despite the stability of short length in-tube condensing
flows considered in Fig. 7a, it is found that these flows
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(with Red 6 22)—like their channel flow counterparts in 1g
or 0g (Fig. 11)—are quite sensitive even to minuscule trans-
verse vibrations of the condensing surface (see Fig. 12a). As
in [1,2], the standing wave vibrations of the condensing sur-
face are modeled by the velocity boundary condition
v1(x, 0, t) = e Æ sin(2px/k) Æ sin(2pt/T) whose amplitude e is
in the range of 10�6—5 · 10�5, wave-length k typically pro-
duces waves of similar wave-lengths (this is found to be the
case over the stable film flow zones considered here), and
time period T (frequency f = 1/T) may be a given constant
or may have a prescribed variation with x. A small ampli-
tude noise is called resonant or non-resonant depending on
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Fig. 12a. For flow situations specified in Table 1, for vertical tube in
normal gravity, the figure shows the film thickness values for steady noise-
free, unsteady resonant and unsteady non-resonant bottom wall noise
cases. Bottom wall noise is given as v1(x, 0,t) = e Æ sin(2px/k) Æ sin(2pt/T),
e = 0.5E�04, k = 2.6 and TðxÞ ¼ k=�usteady for resonant bottom wall noise
case while T = 10 for non-resonant bottom wall noise case. The interface
was tracked with Dt = 1.
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Fig. 12b. For flow situations specified in Table 1 of the longer length
vertical tube, the figure above shows the film thickness values for steady
noise-free, unsteady resonant and unsteady non-resonant bottom wall
noise solution for flow under normal gravity cases. Bottom wall noise is
given as v1(x,0, t) = e Æ sin(2p x/k) Æ sin(2pt/T), e = 0.5E�05, k = 13 and
T ¼ TðxÞ ¼ k=�usteady for resonant bottom wall noise case while T = 10 for
non-resonant bottom wall noise case. The interface was tracked with
Dt = 5.
whether it does or does not satisfy the resonance criteria
given by (also see [11] and Eq. (8) of [2])

k � f ¼ k=TðxÞ ¼ �uðx; tÞ ffi �usteadyðxÞ; ð18Þ
where �u � ui

1 þ fJa=ðRe1 � Pr1Þgoh1=oxji and �v � vi
1þ

fJa=ðRe1 � Pr1Þgoh1=oyji. When the resonance condition
in Eq. (18) is satisfied, the forward phase-speed associated
with the bottom wall noise coincides with the forward
phase-speeds ð�uðx; tÞ ffi �usteadyðxÞÞ associated with the
small-amplitude interface waves.

Clearly the results in Fig. 12a show that the resonant
noise enhance the wave-effects for the vertical in-tube case
just as they do for the channel cases (see [1,2]). The
enhancement in the longer tube case of Fig. 12b is clearly
greater beyond the location where the steady solution
was found to be unstable (i.e., at these locations in
Fig. 7b, the amplitudes of waves were much bigger than
15% of the initial undisturbed film thickness).

9.2. Shear driven cases

9.2.1. In-tube/channel geometries

The complex stability response for shear driven cases
as described earlier also determines their noise sensitiv-
ity response. The horizontal channel’s noise-sensitivity
depicted in Fig. 11 is for the stable short-length zone. There-
fore the response of the stable wave-free zones to noise (for
0g/horizontal cases in Figs. 10a,10b) shows a persistence of
waves (whose amplitudes do not grow) and slight drifting of
the mean steady solution. For the downstream unstable
wavy zones of Figs. 10a,10b (growing amplitude waves),
the behavior in response to a persistent bottom wall noise
is one of much larger amplitude waves. Similar, but more
sensitive, noise response for 0g in-tube case is shown in
Fig. 12c – where, again, the ‘‘parabolic’’ vapor zone is very
small.
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Fig. 12c. For flow situations specified in Table 1, the figure above shows
the film thickness values for steady noise-free, unsteady resonant and
unsteady non-resonant bottom wall noise solution for the longer length
tube under zero gravity. Bottom wall noise is given as v1 (x, 0,t) =
e Æ sin(2px/k) Æ sin(2pt/T), e = 0.35E�05, k = 8; with T ¼ TðxÞ ¼ k=�usteady

for resonant bottom wall noise case while T = 32 for non-resonant bottom
wall noise case. The interface was tracked with Dt = 15.
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10. Effects of surface tension

10.1. Gravity driven cases

10.1.1. In-tube/channel geometries

An assessment of the role of the surface tension term in
the solutions obtained for Figs. 11, 13, and 14a is accom-
plished by looking at the size of the surface-tension term
on the right side of Eq. (3) relative to the size of pi

1 on
the left side of Eq. (3). For normal gravity flows—be it
in-tube or vertical/horizontal channel—this term is less
than 1% for all cases considered thus far. Therefore surface
tension value (its presence or absence within a feasible
range) is not very important for the gravity driven flow
in Fig. 13. Its presence or increase only causes a slight thin-
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Fig. 13. For the in-tube flow situations specified in Table 1, the
above steady and unsteady d(x,t) values are for the flows with and
without natural surface tension of the fluid. The noise is resonant
with v1(x,0, t) = e Æ sin(2px/k) Æ sin(2pt/T), e = 0.5E�05, k = 10, and T ¼
TðxÞ ¼ k=�usteady. The interface was tracked with Dt = 5.
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Fig. 14a. For channel flow situations specified as in Table 1, the figure
above shows the effect of surface tension on film thickness (at t = 240
using Dt = 10) under zero-gravity and horizontal normal gravity environ-
ments. The bottom wall noise is resonant with v1(x,0, t) = e Æ sin(2px/k) Æ
sin(2pt/T), e = 0.75E�05, k = 10, and TðxÞ ¼ k=�usteady. The interface was
tracked with Dt = 10.

Fig. 14b. For channel flow situations specified as in Table 1, the figure
above shows the effect of surface tension on film thickness (at t = 195
using Dt = 15) under zero-gravity environment and no noise condition.
ning of the mean film thickness and also shows a slight sta-
bilizing effect on the wave amplitudes (they are smaller).

10.2. Shear driven cases

10.2.1. In-tube/channel geometries

However, for zero gravity channel flows, for the cases
that have been considered here (fluid is R-113), this term
can be as big as 60% for wave-free cases and as big as
300% for resonant wavy cases. And, in fact, for the slow
inlet speed (U = 0.3 m/s) 0g channel case in Fig. 14a, no
steady/quasi-steady solution can be found if surface ten-
sion is too small (i.e., for the hypothetical r = 0 case).
For the higher shear (U = 1 m/s) 0g channel cases in
Fig. 14b, however, there is an improved ability to with-
stand waves under absence/reduction of surface tension
(i.e. a solution exists for r = 0 case). Overall, for shear
dominated flows over the parabolic zone for which a natu-
ral steady/quasi-steady ‘‘parabolic’’ solution exists and also
over the ‘‘elliptic’’ zone of Fig. 14b, it is found that the
presence of surface tension or increase in surface tension
stabilizes the waves (reduced amplitudes).

The above set of results suggests a need for a more
refined and systematic parametric study of the role of sur-
face-tension for zero-gravity flows. In any case, stabilizing
condensate flows in zero-gravity by suitable arrangements
that prescribe or limit the exit condition values appear to
be far more attractive than stabilizing the unconstrained
exit flows by manipulating the normal stress or surface ten-
sion conditions at the interface.

11. Effects of waves on heat transfer rates

11.1. Gravity driven cases

11.1.1. In-tube/channel geometries

The wave effects for the in-tube cases are found to be
quite similar to the channel case [2] and the discussions
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given there also apply here. For example, as shown in
Fig. 15, for resonant noise, short-length, vertical in-tube
cases; there is a 5–10% enhancement in time averaged wall
heat flux at large x. Fig. 15 also shows that wall heat flux is
slightly larger than the interfacial heat flux for the no-noise
steady cases—the difference between the two contributes to
the slight subcooling of the condensate as it moves for-
ward. However, for the wavy cases, at some large x seg-
ments, the interfacial heat flux may exceed the wall heat
flux.

11.2. Shear driven cases

11.2.1. In-tube/channel geometries
For the stable portion of 0g/horizontal internal con-

densing flows, it is found, as in [2] for channel cases and
in Fig. 16 for in-tube cases, there is no significant enhance-
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at the interface. The noise is resonant with v1(x, 0,t) = e Æ sin(2px/k) Æ
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Fig. 16. For flow situations specified in Table 1 of the tube under zero
gravity, the figure shows steady and time-averaged values of heat flux at
the wall and at the interface. The noise is resonant with v1(x, 0,t) = e Æ
sin(2px/k) Æ sin(2pt/T), e = 0.35E�04, k = 8, and T ¼ TðxÞ ¼ k=�usteady.
ment in heat transfer rates due to interfacial waviness. In
fact, on average, compared to the smooth-interface case,
there is a decrease in heat-flux.

12. Effects of waves on shear stress

12.1. Gravity driven cases

12.1.1. In-tube/channel geometries

For resonant noise, short-length, vertical in-tube cases;
in Fig. 17, it is found that non-dimensional interfacial
and wall shear (see definition of s in [2]) show strong wave
effects—with a clear wave induced enhancement in inter-
facial shear occurring only at large x.

12.2. Shear driven cases

12.2.1. In-tube/channel geometries

The in-tube cases, being similar to what has been dis-
cussed in [2] for the horizontal channel geometry, are not
discussed here for brevity.

13. Summary of results

The computational and experimental results and associ-
ated flow regimes for constrained (i.e. prescribed or fixed)
steady exit conditions are best summarized by Fig. 3. These
flow regimes can be kept annular or annular-wavy over
long distances.

For the commonly occurring unconstrained (or unspec-
ified) exit-condition cases, there are various steady/quasi-
steady and other flow regimes. These regimes for gravity
and shear driven flows are respectively summarized by
Fig. 4a, 4b and their captions. Clearly the relative lengths
of the various flow regimes in Fig. 4a or Fig. 4b are
functions of all the flow conditions (with inlet speed,
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Fig. 17. For flow situations specified in Table 1 of the tube and vertical
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stress at the wall and at the interface. The noise is resonant with
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TðxÞ ¼ k=�usteady.
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temperature difference DT, and exit location xe in particu-
lar) that determine the flow.

14. Conclusions

By improving the accuracy of the interface tracking
approach for the transient wavy flows, this paper
extends/improves the results reported in [1,2] to longer duct
lengths. By doing so, the paper discovers the hitherto unre-
ported results that pertain to the loss of stability of the con-
densate flow at the larger downstream distances (e.g.
Redjcr � 20–25 for the gravity driven flows and Redjcr �
7–12 for shear driven flows).

The following results reported in [1,2] were re-estab-
lished and re-confirmed for the important in-tube condens-
ing flow cases:

• For unconstrained exit conditions associated with nearly
incompressible vapor flows, an unsteady noise-free sim-
ulation method for identifying the natural exit condition
(exit pressure or exit quality) and its corresponding solu-
tion are shown to be possible for normal gravity and
zero gravity cases over a length of a duct over which
the flow regime is parabolic.

• The noise-sensitivity and resonance effects make the
wave-free steady solutions quasi-steady and this is dem-
onstrated by the inclusion of the effects of ubiquitous
minuscule condensing surface vibrations that are always
present.

• Heat transfer enhancements due to waves on the inter-
face occur more readily in the presence of gravity driven
condensate flows and this has been shown again for the
in-tube cases.

Some other new results for the channel flow cases and
zero gravity cases are presented here and they improve
our understanding of shear driven cases. These results are:

• If there is inadequate shear available to drive the con-
densate, there may not exist a steady ‘‘natural’’ exit
condition and associated quasi-steady solution. Alter-
natively, a natural steady solution may exist only over
the high shear entrance zone. This has been established
by demonstrating a downstream zone of convective
instability (termed ‘‘loss of parabolicity’’) for certain
shear driven channel and in-tube flows’ steady solu-
tions under unprescribed exit conditions.

• Effects of surface-tension were shown to be insignificant
for all terrestrial environments (horizontal to vertical).
Surface-tension was found to have an important stabi-
lizing effect—particularly for zero gravity—where steady
flows, if they exist, are often weakly stable.

• Sensitivity to small changes in the exit condition (partic-
ularly self-induced changes for unconstrained exits) are
typically found for most shear driven flows as the flow
regime they operate in are, quite commonly, weakly par-

abolic to elliptic.
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Appendix

The differential forms of mass, momentum (x and y
components, where y � 1 � r), and energy equations in
terms of non-dimensional variables for flows in the interior
of either of the phases (I = 1 or 2) for the in-tube flows are
given below:
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The term [t] on the right side of Eq. (4) is given by
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where c2 � � dr/dT � 0.122 N/m/K (for FC-72) and
0.1046 N/m/K (for R-113), and d1 � dT/dp � 0.0003
K/Pa (for FC-72) and 0.0003 K/Pa (for R-113).
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